

Method Optimization for the ICP-OES Analysis of Challenging Environmental Samples from Wastewater to Electronic Wastes

Sabrina Antonio, Regional Marketing Manager, Trace Elemental Analysis, Jeff Gross, Sr. Training Instructor, Trace Elemental Analysis

The world leader in serving science

- Challenges when analyzing environmental samples
 - Difficult matrices
 - Sample variety
 - Regulation and Compliance
 - > Failed sample/QC analyses, subsequent re-runs
 - Sample throughput demands
 - Fast turnaround of sample/reporting results
 - > Maintenance & troubleshooting
 - Training new users

- Why are we experiencing these challenges?
- Where do we begin to address these challenges?
- How can we prevent these challenges?
- When do we call service or applications support?
- Let's begin with the sample matrix...

Layers of challenges related to sample matrix

Thermo Fisher

SCIENTIEIC

Regulation and Compliance - added layer of challenge

- Detection limit requirements
 - National Primary Drinking Water Regulations
 - National Secondary Drinking Water Regulations
 - Unregulated Contaminant Monitoring Rule (UCMR)
 - Different state/municipal regulations

- Analysis according to EPA approved methods
 - Specific quality control protocols
 - Method validation
 - QC standards and samples
 - Control limit criteria

- Data management and transfer to LIMS
- Reporting requirements
- Data audit
- Onsite audit

Address key challenges through

- Instrument innovations
 - Hardware design ٠
 - Software features •
- Method optimization
 - Sample introduction system ٠
 - **Plasma parameters** •
 - Interference correction •
- **Best practices** ٠
 - Sample handling •
 - Contamination prevention ٠
- **Troubleshooting tips** ٠
 - Troubleshoot failures due to sensitivity, • accuracy, precision and carryover issues

6

Thermo Fisher

Instrument Solutions For Environmental Analysis

A Portfolio of Innovative Instruments for Simplified Environmental Analysis

Thermo Scientific iCAP PRO Series ICP-OES

Four instrument models designed to meet the challenges in environmental analysis

Thermo Fisher

Thermo Scientific iCAP PRO Series ICP-OES

Key features for enhanced robustness for high matrix samples

Vertical Torch & Inner Torch Box

- Designed for robustness, corrosion prevention and low maintenance
- Proprietary exhaust flow for plasma stability and minimal sample deposition on torch and injector
- Inner torch box easy to remove for cleaning when necessary

Purged Optical Path Interface

- Purge gas exits optical system through axial and radial Purged Optical Path (POP) cones/nozzles removing constituents that can affect sensitivity
- Ceramic POP cones durable, temperature and corrosion resistant

Purged Optical Path Window

- New POP window protects fore optics from dust, dirt and contamination from the plasma interface
- Easily accessed to remove for cleaning when necessary

Thermo Scientific iCAP PRO Series ICP-OES

New optics and detector for enhanced speed and sensitivity

New, high-energy Echelle polychromator, side-byside arrangement of prism and grating

Optical System

- Compact for maximum light throughput, efficiency, speed and sensitivity
- Fast purge and low purge gas consumption
- New Intelligent Full Range (iFR) mode for measurement of full spectrum in one exposure
- New Enhanced UV (eUV) mode for higher sensitivity for key elements (e.g., As, Se, P, S) in the low UV range

CID 821 Detector

- New CID 821 detector, larger chip, more pixels (over 4M pixels) compared to CID 86
- Reduced order overlap
- Ultra-fast signal readout, 30-40% faster
- No pre-exposure required
- Continuous wavelength coverage
- Immunity from blooming

10 sabrina.antoniol@thermofisher.com | 19July-2021

SCIENTIF

Thermo Fisher

Thermo Scientific iCAP PRO Series ICP-OES

Features for simplicity and ease of use

New Features for Ease of Use

Door Closed

Door Open

New, front sliding door for easy access to torch interface

- New LED instrument status panel
- Integrated torch box interface light

Small Footprint & Easy Servicing

- 24.2" (L) x 27.2" (W) x 36.7" (H)
- Small footprint of any ICP-OES
- Easy access, recessed connections
- Can be pushed close against the wall

Simplified Sample Introduction

- Clip-in components, no small parts
- Quick connect torch
- Automatic gas connections
- Drain sensor for safety
- Compatibility of parts with the previous model (Thermo Scientific[™] iCAP[™] 7000 Series ICP-OES)

Overcoming Challenges Through Method Optimization

Four Key Areas For Method Optimization

Thermo Fisher

Method Optimization

Sample Introduction System

Thermo Fisher

¹³ sabrina.antoniol@thermofisher.com | 19July-2021

Method Optimization

Sample Introduction System

ThermoFisher SCIENTIFIC

Method Optimization

Enhanced Matrix Tolerance (EMT) Quartz Torch

- Made from Quartz, a crystalline form of SiO₂, ideal for most aqueous samples, dilute acids
- Limitation:
 - With continuous analysis of high matrix samples (e.g., sea water) quartz can devitrify/crack leading to signal instability, failed samples/QC and more maintenance

Ceramic Demountable Torch (D-torch)

- Made from Sialon (silicon nitride), a highly durable material, heat and chemical resistant material
- Alumina intermediate tube for excellent chemical and temperature resistance
- Use for high matrix samples (e.g., brines, sea water, fusions, lubricating oils, etc.,)

Method Optimization - Sample Introduction Kits

Pre-configured kits simplifies the selection of sample introduction components

Note: Peristaltic pump tubing not included

Method Optimization - Accessories

Sheath Gas Adaptor – accessory for enhanced robustness and long-term stability

- A Sheath Gas is a constant flow of argon that envelopes the sample aerosol tangentially to
 - · prevent contact with the injector
 - · reduce sample deposition in the injector
- The Sheath Gas is introduced between the spray chamber and torch with the Sheath Gas Adaptor
- Benefits of a Sheath Gas
 - Enables higher tolerance of TDS
 - Less sample dilution, hence improved MDLs
 - Improvement in stability for the long-term analysis of high solid samples (e.g., sea water)
 - Reduced need for extended rinse time between samples

Sheath Gas Off

Sheath Gas On

Method Optimization – Operating Parameters

Thermo Fisher

Operating parameters set-up through instrument software

Thermo Scientific[™] Qtegra[™] Intelligent Scientific Data Solution[™] (ISDS) Software

- Benefits of the Qtegra ISDS Software:
 - Installed on over > 6000 instruments
 - Intuitive, streamline workflow platform
 - Plug-ins for fast autosamplers and autodilution systems
 - A range of new software features (e.g., Plasma TV, auto tunes, modes, etc.) added for ease of use
 - 21 CFR Part 11 compliance tool set
 - Same software platform as Thermo Scientific ICP-MS instruments for easy cross-training

Method Optimization – Operating Parameters

Operating Parameters for Aqueous Samples

New Plasma TV For diagnostics and optimizing instrument parameters Thermo Fisher

SCIENTIFIC

Operating Parameters for iCAP PRO XP and iCAP PRO XPS Duo instruments

	RF Power (Watts)	Nebulizer Flow (L/min)	Pump Speed (rpm)	Auxiliary Flow (L/min)	Coolant Flow (L/min)	Radial View Height (mm)
Range	750 – 1600 W	0 - 1.5	0 - 125	0 - 2.0	0 - 20.0	6 – 18 mm
*Aqueous Settings	1150	0.50	50	0.5	12.5	10

*standard set-up for aqueous samples, optimization needed for high TDS samples

Method Optimization – Interferences

What are the interferences in ICP-OES Analysis?

Three Types of Interferences

Physical Interferences

Difference in physical properties between samples and calibration standards affecting sample transport and nebulization efficiency.

Chemical Interference

Difference in the way sample and calibration standards react in the plasma during vaporization, atomization and ionization.

Spectral Interference

Characterized by an overlap of a constituent wavelength on the analyte wavelength. Also includes background signal interferences.

Thermo Fisher s c i e n t i f i c

Method Optimization – Physical Interferences

Addressing Physical Interferences

 High TDS, suspended solids, high salts, viscosity, density, vapor pressure or volatility Cause Suppression or enhancement of signal Instability of signal, drift during analysis Effect Sample and standard failures More frequent maintenance Dilution – easiest/preferred solution • Matrix Matching – samples and calibration standards Solution Internal Standardization – online (preferred) or manual addition of internal standard Optimize sample introduction and operating parameters Method of Standard Additions – least preferred solution

Thermo Fisher

Method Optimization – Chemical Interferences

Thermo Fisher

Addressing Chemical Interferences

Plasma Loading

- Increased consumption of plasma energy needed to break-up high matrices (e.g., TCLP extracts) causing insufficient energy to excite low concentration or high ionization potential analytes
 - Suppression of ionic wavelengths
 - Low sensitivity for key elements (e.g., As, P, S) and atomic wavelengths
- Solutions: dilution, robust plasma conditions (e.g., higher power setting, higher plasma gas flow, etc.)

Method Optimization – Spectral Interferences

Thermo Fisher

Types of Spectral Interferences

Method Optimization – Spectral Interferences

Addressing Spectral Interferences Through Background Correction

- Spectral interferences can be corrected by:
 - Applying Background Points
 - Interelement Correction Factors (IECs)

Flat Baseline Shift

 Place background point on the side of the peak with no interference

Sloping Baseline Shift

 Always use two background points on both sides of the peak

Thermo Fisher

SCIENTIFIC

Spectral Overlap

- Place background point on side of the peak with no interference
- Use alternative wavelength, if possible
 Apply Interclement Correction Factor
- Apply Interelement Correction Factor

Method Validation

Method Validation and Quality Control – Key for Confirming Method Optimization

Method Validation

- IDL and MDL determinations
- Good calibration curve
 - Minimum Correlation Coefficient of 0.995
- Linear Dynamic Range (LDR) determination
- Precision determined by %RSD between the results of three sample replicates (short term)
- Accuracy confirmed by matrix spike, analysis of a Certified Reference Material (CRM)
- Repeat above determinations over several days to confirm long-term precision and accuracy
- Quality Control Protocol
 - EPA QC standards and protocol built-in the Qtegra ISDS software

Qtegra ISDS Software Quality Control

orient	Quality Control	Tests	Test detai	is for CCB					
- 🔀 Summary	2 × 1 &		Number of	analise fail per	lo cenerate i	OC failure	1		
📲 iCAP PRO XPS Duo	Name Description +								
- 🕞 Method Parameters	Blank Test	8	Number of	analyte warning	is to generali	e a QC failure:	1		
- 🔅 Analytes									
- To Acquisition Parameters	CCB	Continuing Calibration Blank	If this QC f	als	Ignore and	continue from	the next sample		1 🖶 times
	ICB	Initial Calibration Blank	If this QC f	als again	Ignore and	continue from	the next sample	•	1 intes
-10 Intelligent Uptake and Rinse	MTB	Memory Test Blank							
- E Interference Correction	PHS	Preparation Blank	If this QC f	ails a final time	Ignore and	continue from	the next sample	•	1 🚖 times
-	Laubration	lests	Taux Dava	malan	_	_			_
- Auantification	CCV	Continuing Calibration Verification	Tearaa	melers			24	_	_
% Ration	ICV	Initial Calibration Verification	Enabled	Anayte	wam	ng Limit Pi	saxe Limi		
Duality Control	LCS	Laboratory Control Standard	×	As 183.042 (A	que		2		
Manual Samela Control	QCS	Quality Control Standard	×	Ba 455.403 (4	ique	1	2		
Cause List	PairedSam	aple Tests	×	Ca 315.887 (P	iqu		2		
Denote	DUP	Diselecto	×	Co 228.802 (P	iqu	-	2		
- De nepolo	SER	Secial Districto	×	Co 238,832 (P	iqu		2		
Automatic Export	PairedSam	aple Tests (EPA)	M	C1 283.063 (A	que		2		
- A CSV Export	- arcusta	pro restator raj	×	Cu 324.754 (P	iqu		2		
Heport Export	DUP EPA	Duplicate (EPA)	<u> </u>	Fe 203.040 (4	que	1	2		
⊳-∰ Settings	SER EPA	Serial Dilution (EPA)	<u> </u>	Fe 2/3.0/4 ja	que		2		
	Spike Test	f	×	Fe multi-Calci	80	1	2		
	LFB	Laboratory Fortified Blank	M	Mg 2/3.0/3 P	equi		2		
	MOS	Matrix Spike		NE 221 CDA IA	equ	-	2		
	PDS	Post Digestion Spike	×	D 214 914 (A	que	1	2		
	Spike Test	s(ARC)		Eb 220 252 //	000	-	2		
				Sh 217 591 (4		1	2		
	MORS ARC	Mahix Spike (ARC)	×	TI 190 856 (A		1	2		
	Continuous	s lests	-	Y 224 306 (Ar	140	1	2		
	RCV	Regression Coefficient Verification		Y 224 305 (4-	1400	1	2		
	RSV	Relative Stability Verification		Y 360 073 (Az	000	1	2		
	Internal Sta	andard Test		7n 213 856 (4	in the second	1	2		
				P at PD4	-the	1	2		
	IST	Internal Standard Test		1 41.04			•		
Cabaddes III Constituted ablands III							_	_	
Scheduler 🔚 Lompieled Lacedoks 📝 Lo	g xiew								

Addressing Challenges Through Best Practices

Sample handling and minimizing contamination

Be aware of all contamination sources.

Minimize sample handling and transfer steps.

Use ultrapure water, high-purity acids and reagents, and certified stock standards.

Clean apparatus using a comprehensive cleaning procedure.

Measure weights and volumes with accuracy.

Maintain separate sample and standard preparation areas.

Apply proper skill, consistency, and attention to detail.

Addressing Challenges with Troubleshooting Tips

Sensitivity, precision, accuracy, contamination, and carryover issues

Sensitivity

Sensitivity issues are typically characterized by decrease or increase of signal and failure of continuing calibration standard (CCV) recoveries.

Troubleshoot

Check the following:

- Nebulizer or injector blockage
- Use of nebulizer appropriate for sample matrix
- Dirty spray chamber
- Sufficient purge, particularly for low UV wavelengths
- Operating parameters, nebulizer and gas flows, power setting and pump speed
- Interference and appropriate correction applied
- Old/expired calibration standards
- Analysis of second source standard for reference

Precision

Precision issues are typically characterized by high % RSD between sample replicates.

Troubleshoot

Check the following:

- Worn peristaltic pump tubing
- Nebulizer or injector blockage
- Use of nebulizer appropriate for the sample matrix
- Dirty spray chamber
- Sufficient uptake time
- Sufficient rinse time
- Operating parameters, gas flows, pump speed
- Use of the appropriate rinse solution for sample matrix

27 sabrina.antoniol@thermofisher.com | 19July-2021

Thermo Fisher

Addressing Challenges with Troubleshooting Tips

Thermo Fisher

Sensitivity, precision, accuracy, carryover and contamination

Accuracy issues - characterized by poor sample recoveries, failures in the analysis of QC, CRMs, and second source standards.

Troubleshoot

Check the following:

- Nebulizer or injector blockage
- Use of nebulizer appropriate for sample matrix
- Dirty spray chamber
- Operating parameters, nebulizer and gas flows, power setting and pump speed
- Sufficient uptake time for sample matrix
- Interferences and appropriate correction applied
- Proper application of Internal Standardization
- Old/expired calibration standards

Contamination and Carryover

Contamination causes high blanks and sample/QC standard recoveries. Carryover is shown by high standard blanks (CCB) and decreasing sample replicates resulting to high % RSD.

Troubleshoot

Check the following:

- Sufficient rinse time for sample matrix
- Appropriate rinse solution for sample matrix
- Dirty spray chamber
- Contaminated DI water supply and acids, use trace metal or higher-grade acid if possible
- For "sticky" elements (e.g., Hg, Mo, Sb), use longer rinse times. For Hg, use Au to help rinse out Hg.
- Clean work bench/environment free of dust and dirt

Optimized Methods for Environmental Samples

Application Survey

www.thermofisher.com/icappro/

Analysis of Water Samples by US EPA Method 200.7

Application Note 44422 – US EPA Method 200.7 Using the Thermo Scientific iCAP PRO XPS Duo

www.thermofisher.com/icappro/

Instrumentation

- iCAP PRO XPS Duo ICP-OES
- Teledyne Cetac ASX-560 Autosampler

Samples and Standards

- All calibration and QC standards prepared using 1000 mg/L stock standards in 1.5% HNO₃
- Internal Standard: 5 mg/L Yttrium added online
- Samples Drinking water, trench water and well water
- Analysis
 - MDL and LDR Study

30 sabrina.antoniol@thermofisher.com | 19July-2021

Parameter	Setti	ng
Pump Tubing	Sample: Tygon® o Drain: Tygon® wh	orange/white ite/white
Pump Speed	45 rpm	
Spray Chamber	Glass Cyclonic	
Nebulizer Gas Flow	Glass Concentric	optimized
Coolant Gas Flow	12 L/min	for aqueous
Auxiliary Gas Flow	0.5 L/min	<3% TDS
Nebulizer Gas Flow	0.5 L/min	
RF Power	1150 W	
Injector	2 mm	
Replicates	3	
Radial view height	10 mm	
Exposure Time	Axial View – 10 se Radial View – 10 s	econds seconds

Analyzed using iFR mode for all 31 elements

ThermoFisher scientific

Analysis of Water Samples by US EPA Method 200.7

Sample Results

 All spike sample recoveries within the required range of 85%-115%

Barja Asendort, Application Episcialist, Thermo Foher Scientific, Bramer, Germany	The emission and monitoring of natural, produced and or is exertial to ensure both human and emiroriteriand to permissible contamination are controlled by local, netion regulations, in the United States of America the Emirorite America (2001) is its interest between the local and interest America (2001) is its interest and and the contamination of the contami
Keywords Droking water, Environmental anarysis, Mathod 20017, US-899,	Agarce pure in the occept exponence to the set of agains for the quality of suppleted driving wear and driving we as ground wetters. The EPA Office of Ground Water and (OCMOW) administers control under the Federal Regul 141 & 142. This regulation status that all supplied water
Goal This note describes the use of the Thermo Biantities APP HIO XMP Dux CPL-DBB for the analysis of webrir semples using the US EPA Method 2002	The Manusum Conference Laws (MC) for the commu- tive National Prince Version (Ware Regulation (NDM) MCL and Resonance Conference) Laws (MCL) and Conference Conference Laws (MCL) and MCL) or introposed advances affect on the two-the dynamics conference and ware and the on the two-the dynamics of the MCL and the MCL and the MCL and the MCL properties such as their and to the MCL and the MCL properties such as their and to the MCL and the MCL properties such as their and too (Teles 2, The Umag MCL) and the MCL and the MCL and the MCL and the MCL and the McL and the MCL and the MCL and the MCL and the McL and the MCL and the MCL and the MCL and the McL and the MCL and the MCL and the MCL and the McL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the MCL and the M

Thermo Fisher

Application Note 44422 www.thermofisher.com/icappro/

	Drinking Water			T	Trench Water			Well Water		
Analyte	Unspiked (mg/L)	Spiked (mg/L)	Recovery (%)	Unspiked (mg/L)	Spiked (mg/L)	Recovery (%)	Unspiked (mg/L)	Spiked (mg/L)	Recovery (%)	
As	<mql< td=""><td>0.200</td><td>100.0</td><td><mql< td=""><td>0.203</td><td>101.5</td><td><mql< td=""><td>0.203</td><td>101.5</td></mql<></td></mql<></td></mql<>	0.200	100.0	<mql< td=""><td>0.203</td><td>101.5</td><td><mql< td=""><td>0.203</td><td>101.5</td></mql<></td></mql<>	0.203	101.5	<mql< td=""><td>0.203</td><td>101.5</td></mql<>	0.203	101.5	
Са	40.52	42.43	95.5	49.92	57.39	99.6	46.20	53.66	99.5	
Cd	<mql< td=""><td>0.199</td><td>99.5</td><td><mql< td=""><td>0.196</td><td>98.0</td><td>0.01</td><td>0.199</td><td>99.0</td></mql<></td></mql<>	0.199	99.5	<mql< td=""><td>0.196</td><td>98.0</td><td>0.01</td><td>0.199</td><td>99.0</td></mql<>	0.196	98.0	0.01	0.199	99.0	
Cu	0.024	0.319	98.3	<mql< td=""><td>0.291</td><td>97.0</td><td>0.007</td><td>0.296</td><td>96.3</td></mql<>	0.291	97.0	0.007	0.296	96.3	
Fe	0.045	0.239	97.0	1.360	8.701	97.9	27.40	34.82	98.9	
Hg	<mql< td=""><td>0.196</td><td>98.0</td><td><mql< td=""><td>0.196</td><td>98.1</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<></td></mql<>	0.196	98.0	<mql< td=""><td>0.196</td><td>98.1</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<>	0.196	98.1	<mql< td=""><td>0.197</td><td>98.5</td></mql<>	0.197	98.5	
К	2.747	7.795	101.0	12.56	15.31	110.0	1.401	4.116	108.6	
Mg	4.271	11.60	97.7	7.863	14.95	9.45	6.953	14.02	94.2	
Na	14.24	19.67	108.6	145.31	170.8	102.0	92.85	118.3	101.8	
Р	0.015	1.644	108.6	0.102	1.730	108.5	1.185	2.742	103.8	
Pb	<mql< td=""><td>0.197</td><td>98.5</td><td><mql< td=""><td>0.192</td><td>96.0</td><td>0.077</td><td>0.266</td><td>94.5</td></mql<></td></mql<>	0.197	98.5	<mql< td=""><td>0.192</td><td>96.0</td><td>0.077</td><td>0.266</td><td>94.5</td></mql<>	0.192	96.0	0.077	0.266	94.5	
Sb	<mql< td=""><td>0.200</td><td>100.0</td><td><mql< td=""><td>0.195</td><td>97.5</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<></td></mql<>	0.200	100.0	<mql< td=""><td>0.195</td><td>97.5</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<>	0.195	97.5	<mql< td=""><td>0.197</td><td>98.5</td></mql<>	0.197	98.5	
Se	<mql< td=""><td>0.193</td><td>96.5</td><td><mql< td=""><td>0.193</td><td>96.5</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<></td></mql<>	0.193	96.5	<mql< td=""><td>0.193</td><td>96.5</td><td><mql< td=""><td>0.197</td><td>98.5</td></mql<></td></mql<>	0.193	96.5	<mql< td=""><td>0.197</td><td>98.5</td></mql<>	0.197	98.5	
TI	<mql< td=""><td>0.198</td><td>99.0</td><td><mql< td=""><td>0.281</td><td>93.7</td><td><mql< td=""><td>0.283</td><td>94.3</td></mql<></td></mql<></td></mql<>	0.198	99.0	<mql< td=""><td>0.281</td><td>93.7</td><td><mql< td=""><td>0.283</td><td>94.3</td></mql<></td></mql<>	0.281	93.7	<mql< td=""><td>0.283</td><td>94.3</td></mql<>	0.283	94.3	
Zn	0.0009	0.22	109.6	0.0013	0.22	109.4	0.282	0.48	99.0	

Thermo Fisher s c I E N T I F I C

Analysis of 25% NaCl Samples

www.thermofisher.com/icappro/

Instrumentation, Sample Introduction and Operating Parameters

Instrumentation

- Dedicated radial and duo instruments were used to compare performance and results for this high matrix sample
- For extra robustness, the Ceramic
 D-torch and Sheath Gas were used

Parameter	Setting for iCAP PRO XP ICP-OES Radial	Setting for iCAP PRO XP ICP-OES Duo
Pump Tubing	Sample Tygon® orange/ white	Sample Tygon® orange/ white
	Drain Tygon®	Drain Tygon®
	white/white	white/white
Spray Chamber	Baffled cyclonic	Baffled cyclonic Optimized
Nebulizer	Burgener Mira Mist	Burgener Mira Mist for high salt
Center Tube	2.0 mm (ceramic)	2.0 mm (ceramic) samples
Torch	Ceramic D-Torch Radial	Ceramic D-Torch Duo
Pump Speed	45 rpm	45 rpm
Flush Pump Speed	100 rpm	100 rpm
Pump Stabilization Time	10 s	10 s Long wash not needed
Wash Time	30 s	^{30 s} with the Sheath Gas
Nebulizer Gas Flow	0.55 L·min ⁻¹	0.55 L⋅min ⁻¹
Auxiliary Gas Flow	0.5 L∙min ⁻¹	1.5 L·min ⁻¹
Coolant Gas Flow	12.0 L L·min ⁻¹	<u>12.0 L·min⁻¹</u>
Additional Gas	0.15 L_L·min ⁻¹	0.15 L·min ⁻¹ Sheath Gas Flow
RF Power	1400 W	1350 W Higher power for
Radial Viewing Height	11 mm	11 mm high salt samples
Exposure Time	iFR 10 s	Radial iFR 10 s, Axial iFR 10 s

Thermo Fisher

Analysis of 25% NaCl Samples

Results – Sensitivity and Long-Term Stability Tests

Method Detection Limits (MDL) obtained

Long-term (18 hours) stability test using the iCAP

33 sabrina.antoniol@thermofisher.com | 19July-2021

Application Note 44470

ThermoFishe

Thermo Fisher

SCIENTIFIC

US EPA 6010D (SW-846) using the iCAP PRO XP ICP-OES

www.thermofisher.com/icappro/

Soil and water samples

- iCAP PRO XP ICP-OES Duo used for the analysis of soil and water samples according to US EPA Method 6010D (SW-846)
- Soil and water samples digested by hot plate and microwave according to US EPA SW-846 sample preparation procedures
- Two soil Standard Reference Materials (SRM) samples analyzed for added method validation
- Teledyne CETAC[™] ASX-560 autosampler combined with a Teledyne CETAC[™] ASXpress[™] system
- Internal standard added online, 5 mg/L Yttrium

Teledyne CETAC is a trademark of Teledyne CETAC Technologies. *ASXpress* is a registered trademark of Teledyne Cetac Technologies.

Thermo Fisher SCIENTIFIC

Analysis of Soil and Water Samples by Method 6010D (SW-846)

• iCAP PRO XP ICP-OES Duo

- > iFR mode used for analysis
- Simultaneous analysis of wavelengths between 167-852 nm in one exposure for axial or radial views
- Fast start-up for routine labs 5 minutes after warm-up
- Fast sample analysis using rapid sample introduction system accessory – 1 minute and 28 seconds analysis per sample
- Interference correction
 - Physical interferences online Internal Standardization
 - Spectral interferences Interelement Correction Factors (IECs) calculated by concentration automatically within Qtegra ISDS

Parameter	Se	etting		
Pump tubing	Sample: Tygon™ of Drain: Tygon™ whit Internal standard: T	range/white te/white ygon™ orange/blue		
Pump speed	45 rpm	1		
Spray chamber	Glass cyclonic			
Nebulizer	Glass concentric			
Nebulizer gas flow	0.55 L∙min ⁻¹			
Coolant gas flow	12.5 L·min ⁻¹	Optimized for		
Auxiliary gas flow	0.5 L·min⁻¹	sample matrices		
Center tube	2 mm	and for fast		
RF power	1,250 W	analysis		
Replicates	3			
Sample loop	2 mL			
Exposure time	Axial: 7 s Radial: 7 s	J		

Tygon is a trademark of Saint-Gobain Performance Plastics.

Method Validation - SRM Results

- Method performance can also be ٠ verified by analyzing SRMs
- NIST SRMs were digested using ٠ microwave assisted acid digestion according to EPA Method 3051A
 - All results should be within ±10% of • the certified values (or as stated on the certificate)

ThermoFishe

Application Note 74146

	SRM 2781	– Domestic Slu	ldge, NIST	SRM 2709a – San Joaquin Soil, NIST			
Element	Measured (mg/kg)	Certified value (mg/kg)	Recovery (%)	Measured (mg/kg)	Certified Value (mg/kg)	Recovery (%)	
Al	16253	16000	102	70636	73700	96	
As	8.1	7.81	104	11.2	10.5	107	
Ва				992	979	101	
Be	0.5820	0.6133	95				
Cd	118.3	12.78	93	0.348	0.371	94	
Со				12.2	12.8	95	
Cr	208	202	103	129	130	99	
Cu	607.3	627.8	97	32.0	33.9	94	
Fe	28357	28000	101	32508	33600	97	
К	4962	4900	101	20649	21100	98	
Mg	5953	5900	101	14925	14600	102	
Ni	78.2	80.2	98	83	85	98	
Р	24722	24300	102	704	688	102	
Pb	206	200.8	103	16.4	17.3	95	
Se	17	16	106				
TI				0.559	0.58	96	
Zn				98	103	95	

Analysis of REE in electronic waste

APPLICATION NOTE 44466 - Robust analysis of REE in electronic waste

www.thermofisher.com/icappro/

• Why is an application on e-waste important?

- Massive amounts of electronic waste generated worldwide
- High demand in modern recycling and recovery industry
- Waste management / Environmental impact

Challenges

- Complicated and varied matrices
- High interferences because of overlapping REEs wavelengths
- Low concentrations of precious and poisonous elements
- Solution
 - Thermo Scientific iCAP PRO XP Duo ICP-OES
 - Teledyne CETAC ASX-560 Autosampler

Thermo Fisher

E-waste Sample Selection

Electronic waste – mobile phones

- Components Analyzed
 - Phone screen (TFT)
 - Circuit board (PCB)
 - Magnet from speaker
- Analytes of Interest
 - Rare earth elements
 - Lanthanide series + Th, Y, Sc
 - Other metals
 - Ag, Au, etc. (precious)
 - Cd, Pb, etc. (toxic)

ThermoFisher SCIENTIFIC

Sample Preparation and Instrument Parameters

thermoscientific

Sample Preparation

- PCBs and TFTs ground into powders and digested using 1:1 HNO₃: HCL
- Magnets digested whole using Aqua Regia

Final Sample Solutions

 Filtered and brought to volume with DI H₂O to contain 10% Trace Metals Grade Acid (HNO₃ & HCI)

> Application Note 44466 www.thermofisher.com/icappro/

Robust analysis of REE in electronic waste High sample throughput with analysis times of less than 2 minutes per sample with the ICAP PRO Series ICP-OES

ent mobile https://www.internet.com/internet/int

In validate components or walkows owno that mich assessment of the second second second second consequences of the second second second second second second and the second second second second second second second second and the second second

ThermoFisher

iCAP PRO XP Duo ICP-OES Parameters

Pump Tubing	Sample Tygon® orange/ white
	Drain Tygon® white/ white
Spray Chamber	Glass cyclonic
Nebulizer	Standard glass nebulizer
Center Tube	1.5 mm (quartz)
Torch	Quartz Duo torch
Pump Speed	45 rpm
Flush Pump Speed	100 rpm
Pump Stabilization Time	10 s
Wash Time	20 s
Nebulizer Gas Flow	0.65 L · min ⁻¹
Auxiliary Gas Flow	0.5 L∙min ⁻¹
Coolant Gas Flow	14.0 L L·min ⁻¹
Additional Gas	0.15 L L·min ⁻¹
RF Power	1300 W

Thermo Fisher

Results

Accuracy

 Matrix Spike Recoveries of Magnet Samples

Robustness

Summary and Conclusion

Overcoming the many challenges in the analysis of environmental samples by ICP-OES starts with handling the sample matrices and variety of samples analyzed through innovative instrumentation and methods optimized for the sample matrices and the interferences they present during analysis.

Sample matrix is a key consideration for method optimization. Sample introduction system, accessories and operating parameters must be selected to handle the sample matrix. Addressing physical, chemical and spectral interferences is essential for accurate data. Finally, the Qtegra ISDS software includes new features for instrument tuning and the quality control protocol to streamline method development.

Thermo Físher

The iCAP PRO Series ICP-OES provides the robustness, sensitivity, speed, compliance tools and simplicity needed by environmental laboratories to run their samples daily. Four new iCAP PRO ICP-OES models are optimized for the sample matrix and productivity needs. www.thermofisher.com/icappro/